Introduction to Web Development

Week 1 - Intro, The Internet!, & Dev Environment

Dr. Paul Talaga 487 Rhodes paul.talaga@uc.edu ACM Lecture Series

University of Cincinnati, OH

October 10, 2012

About the Series

Goals

- High-level understanding of web technologies
- What makes up a website.
- How you can build & maintain one.
- Whatever interests you!

Schedule

Week 1 Intro, How the Internet Works, Dev Environment

Week 2 HTML, CSS, PHP

Week 3 Graphics!

Week 4 Page Layout

Week 5 SEO, JavaScript, AJAX, ...

Week 6 CMS - Wordpress, Joomla!, Drupal, etc...

About the Series

Old Class Website

http://fuzzpault.com/instruction/tfta.php

Me

- BS in Math & CS from St.Lawrence University. '03
- MS in CS from Syracuse University. '06
- Ph.D from Syracuse University 2012
 Exploiting Data Locality in Dynamic Web Applications
- University of Cincinnati Assistant Professor Educator
- "Modeling user interactions for (fun and) profit: preventing request forgery attacks on web applications" - 2009 -Jayaraman, Talaga, Lewandowski, Chapin, Hafiz
- "Enforcing request integrity in web applications" 2010 -Jayaraman, Lewandowski, Talaga, Chapin
- Design, Maintain, & Host 9 sites (starting 1996).

Sizes

Bit
$$0/1$$
 (b)

Byte 8 bits (B)
$$(2^8 = 256) \approx 1$$
 character

Kilobyte kB - 1000 bytes ($2^{10} = 1024$ bytes memory, KiB)

Megabyte MB - 10^6 bytes ($2^{20} = 1024$ kB memory, MiB)

Gigabyte GB - 10^9 bytes ($2^{30} = 1024$ MB memory, GiB)

Terabyte TB - 10^{12} bytes ($2^{40} = 1024$ GB memory, TiB)

Petabyte PB - You get the idea.

Speeds: Latency - Bandwidth

- Latency (ms) $(10^{-3} \text{ seconds})$
- kb/s, kbit/s, kbps kilobit per second (b not B!)
- Mb/s, Mbit/s, Mbps Megabit per second
- Gb/s, Gbit/s, Gbps Gigabit per second

Sizes

Bit
$$0/1$$
 (b)

Byte 8 bits (B)
$$(2^8 = 256) \approx 1$$
 character

Kilobyte kB - 1000 bytes (
$$2^{10} = 1024$$
bytes memory, KiB)

Megabyte MB - 10^6 bytes ($2^{20} = 1024$ kB memory, MiB)

Gigabyte GB -
$$10^9$$
 bytes ($2^{30} = 1024$ MB memory, GiB)

Terabyte TB -
$$10^{12}$$
 bytes ($2^{40} = 1024$ GB memory, TiB)

Petabyte PB - You get the idea.

Speeds: Latency - Bandwidth

- Latency (ms) $(10^{-3} \text{ seconds})$
- kb/s, kbit/s, kbps kilobit per second (b not B!)
- Mb/s, Mbit/s, Mbps Megabit per second
- Gb/s, Gbit/s, Gbps Gigabit per second

The Internet!

What is the Internet?

"It's a series of tubes." - Ted Stevens, 2006 - NO!

Jargon

Web Interconnected networks of computers

IP Internet Protocol v4 & v6

TCP Transmission Control Protocol

DNS Domain Name System

HTTP(S) Hypertext Transfer Protocol

HTML Hypertext Markup Language

URL Uniform Resource Locator

The Internet!

What is the Internet?

"It's a series of tubes." - Ted Stevens, 2006 - NO!

Jargon

Web Interconnected networks of computers

IP Internet Protocol v4 & v6

TCP Transmission Control Protocol

DNS Domain Name System

HTTP(S) Hypertext Transfer Protocol

HTML Hypertext Markup Language

URL Uniform Resource Locator

IPv4 vs IPv6

Tools

ping ping6 traceroute whois tcpdump Wireshark

IPv4 32bit, IPv6 128bit 4 billion in IPv4, World Population 6 billion!

DNS

Domain Name System: Maps domain name to IP address

```
PING google.com (74.125.225.71): 56 data bytes 64 bytes from 74.125.225.71: time=16.638 ms

In NJ. Why not the same?!?

PING google.com (74.125.137.102) 56 bytes of data. 64 bytes from (74.125.137.102): time=23.5 ms

PING uc.edu (10.23.135.100): 56 data bytes 64 bytes from 10.23.135.100: time=1.130 ms
```

Every website must have a nameserver responding to DNS requests.

Putting it together

HTTP?

HyperText Transfer Protocol

- Request-response protocol
- http TCP port 80
- https http through SSL/TLS TCP port 443
- HTTP/1.0 3 methods: GET, POST, HEAD
- HTTP/1.1 8 methods total
- Status Codes: 200, 400, 404
- Single TCP session per request, HTTP/1.1 adds persistent connection
- A Webserver speaks HTTP!
- SPDY: An experimental protocol for a faster web

HTTP?

HyperText Transfer Protocol

- Request-response protocol
- http TCP port 80
- https http through SSL/TLS TCP port 443
- HTTP/1.0 3 methods: GET, POST, HEAD
- HTTP/1.1 8 methods total
- Status Codes: 200, 400, 404
- Single TCP session per request, HTTP/1.1 adds persistent connection
- A Webserver speaks HTTP!
- SPDY: An experimental protocol for a faster web

Web Server Market Share

Development Environment: This Works for Me

Setup:

- Fedora 14 Similar to CentOS (Webserver)
- Local Webserver & Database (Apache w/PHP, MySQL)
- Editors (Emacs, gedit, Gimp, Photoshop)
- Web Browsers (Chrome, Firefox, IE, Opera, Safari)

Development Progression:

- Write HTML/PHP
- 2 View from local server
- 3 Repeat until happy
- 4 View in other browsers/ benchmark
- Deploy! (FTP, SFTP, SSH, SCP, rsync)
- 6 Weekly/Monthly snapshots of local files
- Weekly Database snapshots from webserver

Development Environment: This Works for Me

Setup:

- Fedora 14 Similar to CentOS (Webserver)
- Local Webserver & Database (Apache w/PHP, MySQL)
- Editors (Emacs, gedit, Gimp, Photoshop)
- Web Browsers (Chrome, Firefox, IE, Opera, Safari)

Development Progression:

- Write HTML/PHP
- View from local server
- 3 Repeat until happy
- 4 View in other browsers/ benchmark
- Deploy! (FTP, SFTP, SSH, SCP, rsync)
- 6 Weekly/Monthly snapshots of local files
- 7 Weekly Database snapshots from webserver

Thanks! See you next week!